The airspace above the United States can seem as complex and convoluted as a soap opera plot. With a little study, however, it does make sense.

In this Safety Advisor, we will examine the airspace structure and how pilots are expected (and required by the Federal Aviation Regulations) to operate within it.

Throughout this Safety Advisor, we will be talking about VFR and IFR operations within different classes of airspace. VFR pilots need to know more about airspace than IFR pilots, because most airspace was designed to separate VFR and IFR operations. The simple act of being on an IFR flight plan means that a clearance through controlled airspace has already been granted. Of course, pilots who are studying for FAA knowledge or practical tests will need to know everything.

Distilled to the basics, there are two kinds of airspace: uncontrolled and controlled.

Uncontrolled Airspace

In the early days of aviation, all airspace was uncontrolled, what we today call Class G airspace. Way back when, there were few airplanes, and none had the instruments necessary to fly in clouds. Even at the busiest of airports, traffic density was very low, and the airplanes flew slowly. Although there were no standards for weather conditions that aircraft could fly in, it was generally agreed that if you remained clear of clouds and had at least one-mile visibility, you could see other airplanes and terrain in time to avoid a collision. This was called see and avoid. It formed the basis for VFR flight and remains critical to preventing collisions.

As the aviation population gained experience flying in marginal weather, pilots learned that because vision faded at night and at altitude, better weather conditions were necessary to see and avoid other
Figure 1. Victor Airway

Contrary to what many pilots believe, controlled airspace does not mean that all flight within it is controlled. It means that IFR services are available to qualified pilots who choose to use them. Pilots operating under VFR may fly freely in controlled airspace as long as weather conditions meet current regulatory requirements for that airspace.

Begin the Approaches

Airport-based radio navigation facilities made instrument approaches possible, greatly improving the utility of aircraft, while also creating some traffic-separation challenges. Close encounters between IFR airplanes on approach to airports and VFR airplanes flying under the weather led to the creation of transition areas.

Transition areas surrounded airports with instrument approaches and brought Class E airspace to within 700 feet of the surface. This move was intended to protect approaching IFR pilots. Pilots flying under VFR could operate in the transition areas as long as they had VFR weather minimums (Figure 2 on the next page shows the magenta tint used to depict transition areas).
At first, the only approaches were of the nonprecision variety. That is, they provided no vertical guidance. Pilots would fly to or from a navaid and, at the appropriate distance or time, would descend to predetermined altitudes. Depending upon the speed of the airplane and the height of obstacles surrounding the airport, a nonprecision approach might or might not be sufficient to get below the clouds and onto the runway.

To help pave the way for all-weather utility, the instrument landing system (ILS) was invented, providing vertical guidance in the form of an electronic glideslope. The ILS systems brought airplanes to within 200 feet of the ground, and that caused some problems with VFR flight around airports with precision approaches. The solution was to bring Class E, or controlled airspace, to the surface and to raise the weather minimums so that VFR traffic would not get in the way of IFR traffic during poor weather.

VFR minimums for surface-based Class E airspace are: a 1,000-foot ceiling and 3 statute miles visibility. When the weather is at least that good, VFR and IFR traffic can legally mix within surface-based Class E (see Figure 3).

Area navigation (RNAV) approaches provide access to many GA airports that would otherwise not have an instrument approach — at a fraction of the cost of traditional approach systems. Wide-Area Augmentation System (WAAS) LPV approaches (lateral precision with vertical guidance) outnumber ILS approaches in the U.S. and provide even greater precision and enhanced safety to ILS-like minimums.

A weather observer or automated weather observation equipment (ASOS or AWOS) must be available at airports surrounded by surface-based Class E. If weather information is not available, the airspace reverts to Class G with a Class E transition area, as shown in Figure 3.

View From the Tower

As traffic increased at major airports, the need for control towers became apparent. Controllers in the tower were — and still are — responsible for sequencing arriving and departing airborne traffic and keeping order on the ground. Class D airspace was established around towered airports, and all pilots operating within it were required to communicate with the tower, regardless of weather conditions. The same weather minimums as those in surface-based Class E applied to Class D. Figure 4 shows how Class D airspace is charted.
When arriving, departing, or passing through Class D airspace, communications must be established with the tower. Communications must also be established when operating to or from an outlying field within the Class D airspace. When the tower is not operating but weather information is available, the airspace reverts to surface-based Class E (Figure 3). If weather information is not available, the airspace reverts to Class G as shown in Figure 2.

Part-time control towers’ hours of operation are published in the Airport/Facilities Directory, as well as on sectional charts (see Figure 5 above, right).

To help separate fast and slow traffic, there is also a speed limit of 200 knots indicated airspeed below 2,500 feet agl within four nautical miles (nm) of the primary Class D airport.

The Radar Age

Ground-based surveillance radar was introduced to aid ATC in separating aircraft. It exists in many forms and areas of coverage. Today, it’s known mainly by two components, air route traffic control centers (or just “center”) and terminal radar approach control (Tracon, or “approach”).

With radar surveillance to separate aircraft, ATC can reduce the distance between participating aircraft. Intended mainly to separate IFR traffic, ATC may assist VFR traffic by providing flight following. This service allows VFR pilots to receive traffic advisories, but does not relieve them of see and avoid responsibility.

Flight following is available from ATC on a workload-permitting basis.
Air travel continued to expand, and the mixture of fast transport-category aircraft and general aviation aircraft around major airports was thought to be a safety risk.

The FAA hastened the development of radar and ATC following a midair collision between a Lockheed Constellation and a Douglas DC-6 over the Grand Canyon in the 1950s. Similarly, the FAA accelerated its plans for more stringent traffic separation and expanded use of controlled airspace after a midair collision between a Boeing 727 and a Cessna 172 in San Diego in 1978.

As radar became commonplace, the FAA designed new classes of airspace solely to separate IFR and VFR flights in areas of high traffic. These classes of airspace include terminal radar service areas (TRSAs), Class C, and Class B.

Airspace in Detail: The TRSA

In some Class D airspace, traffic sequencing is handled by radar approach together with the tower. In these areas, radar assists the tower outside its Class D airspace. These areas are depicted on sectional charts and are called TRSAs, as shown in Figures 6a and 6b. TRSA radar only assists the tower in Class D airspace; the two function independently. Radio participation in the TRSA is voluntary, though recommended, and the airspace within the TRSA maintains its original class designation. TRSAs are simply Class D airspace surrounded by airspace in which radar coverage is provided.

Airspace in Detail: Class C

Class C airspace (see Figures 7a and 7b), has a mandatory communication requirement. Note the differences and similarities between Class C airspace and Class D airspace. Controlled airspace weather minimums are the same for Class C and Class D airspace.

To operate inside or above Class C airspace, all aircraft are required to have a Mode C transponder (up to 10,000 msl). In addition, two-way radio communication must be established when operating within Class C. Any aircraft wishing to depart or return to a satellite airport located within Class C airspace must contact ATC approach control prior to entering Class C.
Figure 8. Class B

A Mode C transponder is required within 30 nm of the primary Class B airport, up to 10,000 msl. This is called the Mode C veil, which exists even outside the normal boundaries of the Class B airspace proper.

Special aeronautical charts, known as terminal area charts (TACs), are published specifically for Class B airspace.

A 250-knot speed limit is imposed within the Class B airspace (just like the rest of the country under 10,000 msl), unless you are operating in airspace to an airport underneath the floor of Class B airspace or within a VFR corridor, in which case the speed limit is 200 knots (VFR corridors will be discussed later). Certain Class B primary airports are prohibited for student pilot operations.

Restrictions

Certain activities are prohibited in controlled airspace. Aerobatics are prohibited in Class B, C, D, surface-based Class E airspace, and on Victor airways.

Airspace in Detail: Class B

If you imagine Class C airspace as the small town that grew into a large community, then Class B is that same community a decade later. In order to sequence high-speed traffic into heavily used airports — such as in Los Angeles, Dallas-Fort Worth, or New York — ATC needed to guarantee separation of traffic farther from the airport. This meant that all aircraft would have to be positively controlled.

Class B airspace provides for positive control of both VFR and IFR traffic. By enlarging the area of radar coverage, Class B airspace is able to provide separation for all aircraft through a mandatory communication requirement. Due to this increase in radar coverage and mandatory participation by all aircraft, cloud clearances are reduced to clear of clouds with three-miles visibility. Class B airspace can be seen in Figure 8.

To operate in Class B you must receive a clearance; i.e., “Cleared into Class Bravo airspace.” Unlike other airspace, receipt of a heading, altitude, or transponder code does not constitute a clearance to enter Class B airspace.

Speed is also restricted in Class C airspace to 200 knots below 2,500 feet agl within four nm of the primary airport.

The communication requirement needed to enter Class C and Class D airspace is fulfilled as soon as ATC repeats the aircraft’s call sign. However, once communication is established, pilots must comply with all ATC instructions or advise otherwise.
Ultralight vehicles and unmanned free balloons above 2,000 feet agl are prohibited in Class B, C, D, and surface-based Class E airspace unless prior permission is granted by ATC.

Transition Routes

Many types of published VFR and IFR routes permit transitions around, under, and through busy and complex airspace. Some require a clearance from ATC, and others do not. There are three general types of VFR routes, described below:

- **VFR flyways** are depicted on VFR terminal area charts and provide the pilot a route in which to transition under Class B airspace in an organized manner. Although these routes do not require a clearance, communication must be established and maintained with any other classes of airspace to be entered — Class C or D, for example. Caution must be exercised because other VFR traffic is likely to be flying the route also.

- **VFR corridors** are “holes” in Class B airspace, with specific horizontal and vertical boundaries through which pilots may transition the airspace without obtaining a clearance or maintaining communication with ATC (see Figure 9). Pilots should be vigilant in looking outside the airplane because VFR traffic tends to cluster in these corridors.

- **VFR transition routes** are used to accommodate VFR traffic through certain Class B airspace. These routes are defined on VFR terminal area charts and require a clearance as well as ATC-assigned altitudes. Their purpose is to minimize controller workload by allowing pilots to navigate on a published route through congested airspace. Pilots may receive an ATC clearance by advising their position, altitude, route name desired, and direction of flight. Once a clearance is received, strict adherence to the route and ATC instructions is required. These routes may not always be available due to traffic flow into or out of the primary airport.

![Figure 9. VFR Corridor](image)

- **RNAV IFR Terminal Transition Routes (RITTRs or T-routes)** expedite the handling of IFR traffic through Class B and terminal airspace. These RNAV routes are published in the Airport/Facility Directory and on IFR en route low altitude charts.

 It’s good practice to read back clearances to ensure that there are no misunderstandings between you and ATC.

![Figure 10. RNAV IFR Terminal Transition Routes](image)
Airspace in Detail: Class A

Because most aircraft that fly above 18,000 msl are capable of IFR, Class A airspace was designed to control them. Class A begins at 18,000 msl and goes to 60,000 msl (see Figure 10). IFR clearances are required for all aircraft in Class A airspace, so there are no VFR weather minimums.

Figure 10. Class A

Aerobatics are prohibited in Class A airspace. Ultralight vehicles and parachute jumps are also prohibited within Class A airspace without prior permission from ATC.

Special VFR

A Special VFR (SVFR) clearance is one that permits take-offs and landings in conditions below basic VFR weather minimums (1,000-foot ceiling and 3-sm visibility). It can be granted within the surface boundaries of Class B, C, D, and E airspace, unless there is a “NO SVFR” noted in the airport information block on the sectional or terminal area chart.

SVFR requires at least one-mile ground or flight visibility and the ability to remain clear of clouds. At night, an SVFR clearance requires that the pilot be instrument-rated and the airplane be equipped for instrument flight. An SVFR clearance only permits the pilot to operate in substandard VFR weather minimums in the selected airspace. Once clear of that airspace, standard weather minimums apply.

But Wait, There’s More

Now that you know where you can go, it’s time to learn where you cannot. Beyond the two basic types of airspace discussed earlier (controlled and uncontrolled), there are two other types of airspace.

Special Use Airspace

Special use airspace (SUA) was developed to advise pilots of an activity or surface area that dictates special rules or notices and may possibly be hazardous. The scheduled hours of operations for a particular SUA area can be obtained from Flight Service or a VFR sectional (Figure 11). There are five main types:

- **Prohibited areas** are established for security reasons or for national welfare and are identified on aviation charts by a defined area marked with the letter “P,” followed by a number. Prohibited areas are permanently “off limits.” An example of a prohibited area is the White House, or Camp David, as shown in Figure 12. Although these areas are charted, it is imperative to check notices to airmen (notams) before you fly. Some prohibited areas such as P-40 (Camp David in Thurmont, MD) may change often.

Figure 11. SUA Scheduled Hours of Operation
A pilot flying “GPS-direct” from Frederick, MD to Hagerstown, MD was intercepted by fighter aircraft after penetrating P-40’s expanded prohibited area. Pilots must be prepared to divert from normal flight operations to avoid prohibited areas. Check notams, even for local flights.

- **Restricted areas**, shown in Figure 13, though not entirely prohibited to flight activity, are areas in which unauthorized penetration is not only illegal, but also extremely dangerous. Restricted areas are identified on aeronautical charts by a defined area marked with the letter “R,” followed by a number. Altitudes and times differ for each restricted area and can be determined by consulting sectional chart legends. Restricted areas generally contain operations that do not mix well with aircraft such as artillery firing, guided missiles, or aerial gunnery. Permission to fly in restricted areas can be given by ATC.

- **A warning area** is airspace over domestic or international waters that extends from three nm beyond shore. Warning areas are advisory in nature and alert pilots that they may be entering areas of hazardous activity (see Figure 14).

- **Military operations areas (MOAs)**, depicted in Figure 15, separate high-speed military traffic from IFR traffic. These areas are identified on aviation charts by a defined area marked with “MOA,” preceded by the MOA’s name. MOA altitudes differ for each individual area and can be determined by consulting sectional chart legends. Although VFR pilots are not prohibited from entering MOAs, they are cautioned to keep a watchful eye out for military operations such as aerial refueling, air combat training, and formation flying.

The U.S. Air Force was granted permission to conduct nighttime lights-out training in certain MOAs across the country. During lights-out training, military pilots fly using night-vision goggles (NVGs) and all exterior aircraft lighting is turned off. While GA aircraft are still permitted to fly in these MOAs, pilots should be sure to contact the controlling agency for traffic advisories.
The Cessna pilot had been receiving VFR traffic advisories from the Tampa TRACON. The F-16 had just been cleared onto a visual MTR and was not communicating with ATC at the time of the accident.

Military aircraft are permitted to exceed the 250-knot speed limit below 10,000 msl when cleared onto an MTR. Pilots should be aware that they can encounter high-speed military aircraft at low altitudes outside of MOAs and restricted areas.

- **Air defense identification zones (ADIZ)** exist over the coastal waters of the United States and along the U.S. border with Mexico. Aircraft flying within or through the contiguous ADIZ must be on a flight plan (either IFR or defense VFR, known as DVFR), establish and maintain two-way radio communication with ATC, and squawk a discrete transponder code. If on a DVFR flight plan, pilots must file their estimated time of ADIZ penetration with Flight Service and update this time if it changes by more than five minutes. If this time is not updated and the actual ADIZ penetration time differs from the estimated time by more than five minutes, pilot’s may encounter a military interception. If on an IFR flight plan, ATC will be advised of the pilot’s position.

The DC Special Flight Rules Area (DC SFRA) replaced the Washington, DC, ADIZ as of February 2009, permanently establishing the 30 nautical miles around the DCA VOR/DME as National Defense Airspace. The DC SFRA extends from the surface to 18,000 msl and incorporates an inner 15-nm Flight Restricted Zone (FRZ), essentially a no-fly zone around the DCA VOR/DME. Along with specific aircraft equipment and flight plan requirements, unique entry and exit procedures exist for flights within the DC SFRA. Additionally, the FAA has mandated the completion of Special Awareness Training prior to operating VFR within a 60-nm radius of the DCA VOR/DME. Any violation of the DC SFRA may result in civil action against the pilot. For more information, visit www.asf.org/kbyg.
• **Local airport advisory areas** exist at airports where no control tower is in operation but where Flight Service is operating. Although they are not charted, they extend 10 sm from the airport. Within the airport advisory area, Flight Service gives advisory service to arriving and departing traffic.

• **Parachute jump areas** are published locations where parachuting operations occur. They are found in the Airport/Facility Directory and on sectional charts (see Figure 17). Pilots should take care to remain clear of these areas. Aside from spotting jumpers visually, you can learn when jumpers are in the air by monitoring the appropriate ATC frequency found on instrument en route and approach charts, sectionals, and terminal area charts. When in the air, flight following is an excellent and quick source of jump information. Many jump operators also broadcast jump alerts on the common traffic advisory frequency (CTAF) for airports where parachute landing areas are located.

VFR charts also depict glider, hang glider, and ultralight operations areas with symbology as shown in Figure 17.

• **Temporary Flight Restrictions (TFRs)** may be imposed to keep aircraft from entering certain areas. TFRs are often issued on very short notice, for a variety of reasons, and have become more prevalent since September 11, 2001. TFRs are issued by notam (see FAR 91.137).

Because of the last-minute nature of many TFRs, all pilots must use extra caution. Know where you are at all times, obtain at least a standard preflight briefing from Flight Service and request notams before your flight. Even when the TFR is over an event or incident that may be interesting to watch from the air, such as a wild fire or a rocket launch, pilots should remember to stay clear of the TFR area. As pilot in command, it is your responsibility to avoid all TFRs.

TFRs are established for a variety of reasons including:

• Protection of persons and property when low flying aircraft would increase a hazard over a ground incident.

• Providing a safe environment for disaster relief.

• Preventing unsafe congestion of sightseeing aircraft above an incident or event with a high degree of public interest.

• Protecting the President, Vice President, or other public figures.

• Providing a safe environment for space agency operations.

For more information on TFRs, visit www.aopa.org/asf/hotspot/airspace.html

The following is an example of a TFR notam:

FLIGHT RESTRICTIONS ST. MARYS, GA. EFFECTIVE IMMEDIATELY UNTIL FURTHER NOTICE. PURSUANT TO 14 CFR SECTION 99.7 SPECIAL SECURITY INSTRUCTIONS. FLIGHT RESTRICTIONS ARE IN EFFECT DUE TO NATIONAL SECURITY. EXCEPT FOR RELIEF AIRCRAFT OPERATIONS UNDER DIRECTION OF THE COMMANDER, KING BAY NAVAL BASE. ALL OPERATIONS ARE PROHIBITED WITHIN THE AIRSPACE FROM THE SURFACE UP TO BUT NOT INCLUDING 3000 FEET MSL WITHIN A 2 NAUTICAL MILE RADIUS OF 3048N/08131W AND THE CRAIG/CRC/VORTAC 002 DEGREE RADIAL AT 27 NAUTICAL MILES. JACKSONVILLE TRACON 904-741-0767 IS IN CHARGE OF THE OPERATION. MACON/MCN/AFSS 478-784-1155 IS THE FAA COORDINATION FACILITY.

• **Blanket notams** are issued for a group of restrictions or a change of operations.

Examples of blanket notams include:

• Voluntary avoidance of airspace near nuclear power plants, power plants, dams, refineries, industrial
complexes, military facilities, and other similar potentially sensitive facilities.

- Restrictions below 3,000 feet agl within a three-nm radius of any stadium having a seating capacity of 30,000 or more people in which a major league baseball, national football league, NCAA Division I football, or a major motor speedway event is occurring. These restrictions begin one hour before the scheduled start time of the event and expire one hour after the end of the event.

- A requirement for all pilots, if capable, to maintain a listening watch on the 121.5 emergency frequency and review intercept procedures as published in the Aeronautical Information Manual (see page 13).

Know Before You Go

Educate yourself about airspace with the AOPA Air Safety Foundation’s free online course!

- Know Before You Go: Navigating Today’s Airspace www.asf.org/kbyg

Graphical TFR Depictions

- AOPA’s Internet Flight Planner www.aopa.org/flight_planner/intro.html

Special Use Airspace

- AOPA’s Special Use Airspace Web site www.aopa.org/members/airports/sua.cfm

For more FREE information on these and other aviation safety topics, visit www.asf.org
IN-FLIGHT INTERCEPT PROCEDURES

<table>
<thead>
<tr>
<th>Law Enforcement Aircraft</th>
<th>Meaning</th>
<th>Intercepted Aircraft</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocks wings. After acknowledgement initiates a slow level turn, normally to the left, onto the desired heading.</td>
<td>You have been intercepted. Follow me.</td>
<td>Rocks wings and follows. (Also, at night flash navigational lights.)</td>
<td>I understand and will comply.</td>
</tr>
<tr>
<td>Performs an abrupt breakaway maneuver consisting of a climbing 90-degree turn, or more, without crossing the intercepted aircraft's flight path.</td>
<td>You may proceed.</td>
<td>Rocks wings.</td>
<td>I understand and will comply.</td>
</tr>
<tr>
<td>Circles airport, lowers landing gear, and overflies runway in the direction of landing.</td>
<td>Land at this airport.</td>
<td>Lowers landing gear, follows the law enforcement aircraft and lands if the runway is considered safe. (Also, at night turn the landing lights on.)</td>
<td>I understand and will comply.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intercepted Aircraft</th>
<th>Meaning</th>
<th>Law Enforcement Aircraft</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raises landing gear while flying over runway between 1,000' and 2,000', and continues to circle the airport.</td>
<td>This airport is inadequate.</td>
<td>If the intercepted aircraft is requested to go to an alternate airport, the law enforcement aircraft raises its landing gear and uses the intercept procedures.</td>
<td>Understood, follow me.</td>
</tr>
<tr>
<td>The pilot switches on and off all available lights at regular intervals.</td>
<td>Cannot comply.</td>
<td>Performs the breakaway maneuver.</td>
<td>Understood.</td>
</tr>
<tr>
<td>The pilot switches on and off all available lights at irregular intervals.</td>
<td>In distress.</td>
<td>Performs the breakaway maneuver.</td>
<td>Understood.</td>
</tr>
</tbody>
</table>

If you are intercepted by a U.S. Military or law enforcement aircraft, immediately:

1. Follow the instructions given by the intercepting aircraft. (See chart above.)
2. Notify ATC, if possible.
3. Attempt to communicate with the intercepting aircraft and/or ATC on the emergency frequency **121.5 MHz**, giving the identity and position of your aircraft and the nature of the flight.
4. If equipped with a transponder, squawk 7700, unless otherwise instructed by ATC. If any instructions received by radio from any sources conflict with those given by the intercepting aircraft by visual or radio signals, request clarification while continuing to comply with the instructions given by the intercepting aircraft.
5. If the intercepting aircraft dispenses flares, contact ATC immediately.

Approach Phase (day)

![Approach Phase (day)](image)

Identification Phase

![Identification Phase](image)

Post Intercept Phase

![Post Intercept Phase](image)
Airspace at-a-Glance

<table>
<thead>
<tr>
<th>FL600</th>
<th>AOPA Air Safety Foundation</th>
<th>800-USA-AOPA</th>
<th>www.asf.org</th>
</tr>
</thead>
</table>

Communication Requirements and Weather Minimums

<table>
<thead>
<tr>
<th>Minimum Pilot Qualification</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
<th>Class D</th>
<th>Class E</th>
<th>Class G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument Rating</td>
<td>Student*</td>
<td>Student*</td>
<td>Student*</td>
<td>Student*</td>
<td>Student*</td>
<td>Student</td>
</tr>
<tr>
<td>Entry Requirements</td>
<td>IFR: ATC Clearance</td>
<td>ATC Clearance</td>
<td>IFR: ATC Clearance</td>
<td>IFR: ATC Clearance</td>
<td>IFR: ATC Clearance</td>
<td>None</td>
</tr>
<tr>
<td>VFR Visibility</td>
<td>N/A</td>
<td>3 Statute Miles</td>
<td>3 Statute Miles</td>
<td>3 Statute Miles</td>
<td>3 Statute Miles</td>
<td>Day: 1 Statute Mile Night: 3 Statute Miles</td>
</tr>
<tr>
<td>VFR Visibility</td>
<td>N/A</td>
<td>Clear of Clouds</td>
<td>500 Below 1,000 Above 2,000 Horizontal</td>
</tr>
<tr>
<td>VFR Visibility</td>
<td>N/A</td>
<td>3 Statute Miles</td>
<td>3 Statute Miles</td>
<td>3 Statute Miles</td>
<td>5 Statute Miles</td>
<td>5 Statute Miles</td>
</tr>
<tr>
<td>VFR Cloud Clearance</td>
<td>N/A</td>
<td>Clear of Clouds</td>
<td>500 Below 1,000 Above 2,000 Horizontal</td>
<td>500 Below 1,000 Above 2,000 Horizontal</td>
<td>1,000 Below 1 Statute Mile Horizontal</td>
<td>1,000 Below 1 Statute Mile Horizontal</td>
</tr>
</tbody>
</table>

* Prior to operating within Class B, C, or D airspace (or Class E airspace with an operating control tower), student, sport, and recreational pilots must meet the applicable FAR Part 91 training and endorsement requirements. Solo student, sport, and recreational pilot operations are prohibited at those airports listed in FAR Part 91, appendix D, section 4.

** Student pilot operations require at least 3 statute miles visibility during the day and 5 statute miles visibility at night.

*** Class G VFR cloud clearance at 1,200 agl and below (day): clear of clouds.
<table>
<thead>
<tr>
<th>1. TYPE</th>
<th>2. AIRCRAFT IDENTIFICATION</th>
<th>3. AIRCRAFT TYPE/SPECIAL EQUIPMENT</th>
<th>4. TRUE AIRSPEED</th>
<th>5. DEPARTURE POINT</th>
<th>6. DEPARTURE TIME</th>
<th>7. CRUISING ALTITUDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>VFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVFR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. ROUTE OF FLIGHT

9. DESTINATION (Name of airport and city)

10. EST. TIME ENROUTE

11. REMARKS

<table>
<thead>
<tr>
<th>12. FUEL ON BOARD</th>
<th>13. ALTERNATE AIRPORT(S)</th>
<th>14. PILOT'S NAME, ADDRESS & TELEPHONE NUMBER & AIRCRAFT HOME BASE</th>
<th>15. NUMBER ABOARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOURS</td>
<td>MINUTES</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. COLOR OF AIRCRAFT

CIVIL AIRCRAFT PILOTS. FAR Part 91 requires you file an IFR flight plan to operate under instrument flight rules in controlled airspace. Failure to file could result in a civil penalty not to exceed $1,000 for each violation (Section 901 of the Federal Aviation Act of 1958, as amended). Filing of a VFR flight plan is recommended as a good operating practice. See also Part 99 for requirements concerning DVFR flight plans.

CUT-OUT AND RETAIN FOR REFERENCE.
There's always something new that today's pilots need to know. To keep up with the ever-changing world of general aviation, you need a resource that evolves with it.

At www.asf.org, the AOPA Air Safety Foundation is evolving at the speed of aviation. Log on today to take advantage of all the FREE tools at the Internet's premier aviation online safety center — where there is always something new.

SAFE PILOTS. SAFE SKIES:
EVERY PILOT'S RIGHT ... EVERY PILOT'S RESPONSIBILITY

The AOPA Air Safety Foundation
421 Aviation Way
Frederick, MD 21701-4798
1.800.638.3101

© Copyright 2009, AOPA Air Safety Foundation
421 Aviation Way • Frederick, MD 21701
Phone: (800) 638-3101 • Internet: www.asf.org • E-mail: asf@aopa.org

Publisher: Bruce Landsberg • Editors: Kevin D. Murphy, Leisha Bell, and Elizabeth Partie