The National FAA Safety Team Presents

Federal Aviation Administration

Topic of the Month—December Aircraft Performance Calculations

- Presented to: WAFC and Friends
- By: Stephen Bateman, CFI
- Date: Monday December 12th, 2022

Produced by: The National FAA Safety Team (FAASTeam)

Welcome

- Steve Bateman, CFI, AOPA Director of Flying Clubs
- Our monthly 30-minute in-and-out safety meeting loosely based on the FAASTeam Topic of the Month
- WINGS Credit: Yes...but give me a day...
- Probably no time for questions, but please send me email:

steve.bateman@aopa.org

☆ > Flying Clubs > Club Connector Newsletter

- Is there a recoding of this webinar somewhere?
 - No I do not record these webinars
- Can I get a copy of the slides?
 - Yes!
 - This and earlier ToM presentations are available...
 - Sign up tonight!
 - Next edition 12/18

FLYING CLUB CONNECTOR NEWSLETTER

Your source for the latest news on flying clubs all over the country. AOPA's research has shown us that flying club leaders are hungry to learn more about the practical experiences of other clubs. So, we have created this monthly e-newsletter.

NARROW RESULTS 🗸

Aircraft Performance Calculations

- Why
- What
- How

5

Accidents occurring hot, high, humid and heavy situations led The General Aviation Joint Safety Committee (GAJSC) to study this in more detail and concluded that many of these accidents were caused by inaccurate and/or unreasonable expectations about aircraft performance

Accidents Involving Performance

Figure 1.11: Major types of accidents

2020 Non-commercial fixed-wing

Federal Aviation Administration

Types of Take Off Accidents

Figure 1.3.2: Types of takeoff and climb accidents

2020 Non-commercial fixed-wing

Federal Aviation Administration

Types Descent and Approach Accidents

Figure 1.6.2: Types of descent and approach accidents

2020 Non-commercial fixed-wing

Federal Aviation Administration

What: The Aviation 4-H Club

• Hot

- Field temperature (take off and landing performance)
- Temp at altitude (cruise performance)
- High
 - Altitude = lower air density
 - Low pressure day = lower air density

• Humid

- Relative humidity
- T & DP
- Hot air can hold more water vapor = lower air density. (Clouds "float")
- Heavy
 - More W means more L to get up and stay airborne
 - Where does "more L" come from?
 - Lift comes from V² and/or C_L (airspeed and/or AoA)

How often have you heard....

- She'll haul anything you can fit in the door
- Relax I flew it in here I'll fly it out
- We've got plenty of fuel...(umm...perhaps too much?)

Pilots need to know – performance calculations

Weight and balance

- Don't guess it—weigh it!
- Location, location, location
- Objects may shift in flight...

Pilots need to know – performance calculations

• DA and weight impacts:

- Take off distance
- Landing distance
- Climb performance & obstacle clearance
- Cruise performance
- Runway length, composition, condition and slope
 - Take off distance
 - Landing distance

Aircraft configuration

- Normal, short field, soft field
- Flap settings

PA-28-180

PIPER CHEROKEE

Take off calculations

- It's all about DA and weight
- Need to know PA, temp & weight for this Cessna table
- Read the conditions and notes!

CONDITIONS:

Flaps 10° Full Throttle Prior to Brake Release Paved, level, dry runway Zero Wind Lift Off: 51 KIAS Speed at 50 Ft: 56 KIAS

NOTES:

1. Short field technique as specified in Section 4.

"ground roll" figure.

- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
 For operation on dry, grass runway, increase distances by 15% of the

SECTION 5 PERFORMANCE

CESSNA MODEL 172S

SHORT FIELD TAKEOFF DISTANCE AT 2550 POUNDS

CONDITIONS:

Flaps 10° Full Throttle Prior to Brake Release Paved, level, dry runway Zero Wind Lift Off: 51 KIAS Speed at 50 Ft: 56 KIAS

	(0°C	1(0°C	20	0°C	30	0°C	40	0°C
Press Alt In Feet	Grnd Roll Ft	Total Ft To Clear 50 Ft Obst								
S. L.	860	1465	925	1575	995	1690	1070	1810	1150	1945
1000	940	1600	1010	1720	1090	1850	1170	1990	1260	2135
2000	1025	1755	1110	1890	1195	2035	1285	2190	1380	2355
3000	1125	1925	1215	2080	1310	2240	1410	2420	1515	2605
4000	1235	2120	1335	2295	1440	2480	1550	2685	1660	2880
5000	1355	2345	1465	2545	1585	2755	1705	2975	1825	3205
6000	1495	2605	1615	2830	1745	3075	1875	3320	2010	3585
7000	1645	2910	1785	3170	1920	3440	2065	3730	2215	4045
8000	1820	3265	1970	3575	2120	3880	2280	4225	2450	4615

NOTES:

- 1. Short field technique as specified in Section 4.
- Prior to takeoff from fields above 3000 feet elevation, the mixture should be leaned to give maximum RPM in a full throttle, static runup.
- Decrease distances 10% for each 9 knots headwind. For operation with tail winds up to 10 knots, increase distances by 10% for each 2 knots.
- For operation on dry, grass runway, increase distances by 15% of the "ground roll" figure.

Same aircraft...different conditions

For operation on dry, grass runway, increase distances by 15% of the "ground roll" figure.

Recommendations:

- Brief each takeoff, approach, and landing
 - Helps reduce impact of startle
 - Performance expectations
 - Runway and available distance for takeoff or landing
 - Aircraft configuration and target airspeeds
 - Rejected takeoff or landing decision point
 - Departure/approach path
 - Obstacles and terrain
 - Return to airport altitude
 - Forced landing prospects

Recommendations:

- Brief each takeoff, approach, and landing lacksquare
- Take off and landing data (TOLD Card):

Airplane Type:	Tail N	Number: Date:
ATIS/WX Data:	Value:	Comments:
Date:		
Time:		
Airport:		
Info ID:		
Mag. Wind:		Headwind comp = $WV^*Cos(\alpha)$
Viz:		
Sky:		
Temp:		
Dew point:		
Altimeter:		
Expected runway:		
Runway length:		
Remarks:		
Calculated Data:	Value:	Comments:
Pressure Altitude.		
Density Altitude:		See DA table.
Take-off distances:		See PoH page: Take-off conditions:
a. Ground roll:		
b. To clear 50ft:		
c. TO speed IAS (VR):		
d. Vx speed IAS (Vx):		
e. TO speed @ 50ft:		
f. Accel. stop distance:		
(2.5 x TO roll):		
Climb rate:		See PoH page:
a. Rate of Climb (FPM):		

Note: Note: Take care with sign (+/-) of wind and field condition fiddle factors.

At 30PSI.

At 20PSI

50

40

Conditions: See PoH page:

b. Climb IAS (Vy):

SQRT(PSI)*9

Landing distances: a. Ground roll: b. To clear 50ft: c. Landing speed @ 50ft: Hydroplane speed:

Take off rule of thumb

- Rejected take off decision point
 - 70/50 rule
 - By 50% (distance) be at 70% (speed)
 - Say V_R = 60 kts (indicated)
 - If take off distance available = 2,500'
 - Be at 42 kts by 1,250 feet

Pilots need to know

- Terrain and obstructions
- Forced landing challenges and opportunities
- Even if VFR, know the ODPs...

Federal Aviation Administration

Take off and obstacle procedures are in the TPP

- TPP: Terminal Procedures Publication
- Online
 - Search for Digital TPP
 - <u>https://www.faa.gov/air_traffic/flight_info/aeronav/digital_products/dtpp/</u>
- Paper version
- A sort of Chart Supplement for instrument pilots
- Approach plates, STAR, SID...and more...

Departure Procedures

- Even if VFR, know the (IFR) take off minimums
- Here, runway 12 requires a minimum climb of 410' per NM to 800'
- Feet per NM?
 - Yes this is climb gradient (not rate)
- We use this for instrument departures as we don't want to hit things
- **FPM = FPNM * GS/60**
- At 90 knots, requires 615 FPM
- Can Betsy do it this, today?
- How do you know?

TAKEOFF MINIMUMS, (OBSTACLE) DEPARTURE PROCEDURES, AND DIVERSE VECTOR AREA (RADAR VECTORS)

FREDERICK, MD

FREDERICK MUNI (FDK)

TAKEOFF MINIMUMS AND (OBSTACLE) DEPARTURE PROCEDURES

TAKEOFF MINIMUMS: Rwy 5, 300-2 or std. w/min. climb of 260' per NM to 600. Rwy 12, 500-2% or std. w/min. climb of 410' per NM to 600.

Rwy 12, 500-2% or std. w/min. climb of 410' per NM to 800. Rwy 30, std. w/min. climb of 285' per NM to 900 or 1500-2½ for climb in visual conditions

DEPARTURE PROCEDURE:

Rwy 5, climbing left turn heading 340° and on FDK VOR R-010 to 2100 before proceeding on course Rwy 12, climb heading 124° to 900 before proceeding westbound. Rwy 23, climb heading 229° to 1200 before turning right. Rwy 30, climbing right turn heading 040° and on FDK R-010 to 2400 before proceeding on course. VCOA: Rwy 30, obtain ATC approval for climb in visual conditions when requesting IFR clearance. Climb in visual conditions to cross Frederick Muni airport at or above 1700 before proceeding on course. TAKEOFF OBSTACLE NOTES: Rwy 5, light and sign beginning 44' from DER, 123' left of centerline, up to 3' AGL/286' MSL. Trees beginning 1467' from DER, 630' right of centerline, up to 90' AGL/389' MSL. Trees beginning 2645' from DER, 610' left of centerline, up to 75' AGL/394' MSL. Trees beginning 4525' from DER, 597' left of centerline, up to 75' AGL/434' MSL. Elevator and trees beginning 4824' from DER, 341' right of centerline, up to 76' AGL/435' MSL. Trees 1.2 NM from DER, 1562' right of centerline, up to 95' AGL/514' MSL. Trees 1.4 NM from DER, 936' right of centerline, up to 89' AGL/508' MSL. Rwy 12, wall and trees beginning 45' from DER, 283' right of centerline, up to 14' AGL/308' MSL. Trees beginning 1312' from DER, 228' left of centerline, up to 82' AGL/391' MSL. Trees beginning 1667' from DER, 75' right of centerline, up to 83' AGL/362' MSL. Building and trees beginning 3292' from DER, 45' left of centerline, up to 113' AGL/552' MSL Tower, pole, grain silos, and trees beginning 3365' from DER, 41' from DER, up to 101' AGL/520' MSL. Trees 2.1 NM from DER, 1377' left of centerline, up to 90' AGL/779' MSL Trees 2.3 NM from DER, 2711' left of centerline, up to 107' AGL/636' MSL Rwy 23, vehicles on road and trees beginning 134' from DER, 376' right of centerline, up to 21' AGL/327' MSL Pole, buildings, and trees beginning 737' from DER, 286' right of centerline, up to 47' AGL/362' MSL Poles and trees beginning 1477' from DER, 41' left of centerline, up to 72' AGL/411' MSL. Trees beginning 1701' from DER, 55' right of centerline, up to 78' AGL/397' MSL Rwy 30, poles and trees beginning 4' from DER, 320' right of centerline, up to 22' AGL/316' MSL Antenna on building and trees beginning 1255' from DER, 750' left of centerline, up to 56' AGL/335' MSL Trees beginning 1096' from DER, 351' right of centerline, up to 77' AGL/336' MSL. Trees 1962' from DER, 105' right of centerline, up to 77' AGL/356' MSL

Departure Procedures

Federal Aviation Administration

Departure Procedures

- Even if VFR, know the obstacle departure procedures
- Here, runway 12:
 - Climb heading 124° to 900' before proceeding westbound
 - Lots of notes to help you avoid hitting things...
- So...we need to know takeoff performance AND climb performance

Climb performance – DA and Weight PA-28-180 PIPER CHEROKEE

CESSNA MODEL 172S SECTION 5 PERFORMANCE

MAXIMUM RATE-OF-CLIMB AT 2550 POUNDS

CONDITIONS:

Flaps Up Full Throttle

PRESS	CLIMB	RATE OF CLIMB - FPM							
FT	KIAS	-20°C	0°C	20°C	40°C				
S.L.	74	855	785	710	645				
2000	73	760	695	625	560				
4000	73	685	620	555	495				
6000	73	575	515	450	390				
8000	72	465	405	345	285				
10,000	72	360	300	240	180				
12,000	72	255	195	135					

NOTE:

1. Mixture leaned above 3,000 feet for maximum RPM

Notes:

- V_Y reduces with DA
- Rate of climb changes are significant

Federal Aviation Administration

Figure 5-6. Maximum Rate of Climb

Climb performance - leaning

CESSNA MODEL 172S

SECTION 5 PERFORMANCE

MAXIMUM RATE-OF-CLIMB AT 2550 POUNDS

CONDITIONS:

Flaps Up Full Throttle

NOTE:

PRESS	CLIMB	RATE OF CLIMB - FPM						
ALT FT	SPEED KIAS	-20°C	0°C	20°C	40°C			
S.L.	74	855	785	710	645			
2000	73	760	695	625	560			
4000	73	685	620	555	495			
6000	73	575	515	450	390			
8000	72	465	405	345	285			
10,000	72	360	300	240	180			
12,000	72	255	195	135				

Mixture leaned above 3,000 feet for maximum RPM.

Note the note! Lean above 3,000' (DA)

RATE OF CLIMB

CONDITIONS: Flaps Up		MIXTURE SE	TTIN
Gear Up 2700 BBM		PRESS ALT	GP
Full Throttle Mixture Set at Placard Fuel Flow	-	S. L. 4000	17 15
Cowl Flaps Open		8000 12,000	13 10

WEIGHT	PRESS	CLIMB		RATE OF C	LIMB - FPM	
LBS	FT	KIAS	-20 ⁰ C	0 ⁰ C	20 ⁰ C	40 ⁰ C
2800	S.L. 2000 4000 6000 8000 10,000 12,000	82 81 80 79 79 78	1080 960 840 725 610 495 385	990 875 760 645 530 420 315	905 790 675 565 455 350 245	815 705 595 485 380

Weight, DA, Transition Training, Configuration

Aviation Investigation Final Report

Location:	Waterford, Michigan	Accident Number:	CEN13FA364
Date & Time:	June 21, 2013, 13:40 Local	Registration:	N9926Q
Aircraft:	Cessna 172M	Aircraft Damage:	Destroyed
Defining Event:	Loss of control in flight	Injuries:	4 Fatal
Flight Conducted Under:	Part 91: General aviation - Personal		

Field at 981', 28C, 30.17" DA = 2,500'

Estimated gross weight 2,298.5 pounds Maximum allowable gross weight 2,300 pounds

Analysis

Air traffic control tower personnel saw the airplane lift off the runway and attain an altitude of about 100 feet. A pilot approaching the runway for landing saw the airplane lift off and noticed it was not climbing. He saw the airplane "lagging" and "wallowing in the air with flaps extended." Shortly after, the accident pilot advised an air traffic controller that he was "a little overweight" and would need to return to the airport and land. The air traffic controller cleared the airplane to land on the parallel runway or the grass area surrounding the runways. The pilot did not respond. Several witnesses near the airport, including the pilot in the landing airplane, saw the accident airplane impact the ground and burst into flames. A postaccident examination revealed that the wing flaps were fully extended (40 degrees). Weight and balance calculations indicated the airplane was slightly under maximum gross weight. Postaccident examinations revealed no evidence of preimpact mechanical malfunctions or failures that would have precluded normal operation.

Time, Fuel and Distance to Climb

TIME, FUEL, AND DISTANCE TO CLIMB

MAXIMUM RATE OF CLIMB

- 1. Add 1.5 gallons of fuel for engine start, taxi and takeoff allowance.
- 2. Increase time, fuel and distance by 10% for each 10°C above standard temperature.
- 3. Distances shown are based on zero wind.

WEIGHT	PRESSURE	TEMP	CLIMB	RATE OF	F	ROM SEA LE	VEL
LBS	ALTITUDE FT	°C	SPEED KIAS	CLIMB FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM
2800	S.L.	15	82	925	0	0	0
	1000	13	82	875	1	0.3	2
	2000	11	81	830	2	0.6	3
	3000	9	81	780	4	1.0	5
	4000	7	81	730	5	1.3	7
	5000	5	80	685	6	1.6	9
	6000	3	80	635	8	2.0	11
	7000	1	80	585	10	2.4	14
	8000	-1	79	535	11	2.8	17
	9000	-3	79	490	13	3.2	20
	10,000	- 5	79	440	16	3.6	23
	11,000	-7	78	390	18	4.1	27
	12,000	- 9	78	345	21	4.6	31

- Read the notes!
- To determine values when climbing from say 3,000' to say 8,000'
 - Get the 8,000' values
 - Subtract the 3,000' values

Example

 Climbing from an airport at 3,000' to 8,000' in standard conditions:

(2.8 - 1.0) + 1.5 = 3.3 gallons

- 11-4 = 7 minutes
- 17-5 = 12NM
- RoC ~ 650 FPM
- IAS ~ 80 knots

Koch Chart

Example:

- For example, the diagonal line shows that 230 percent must be added for a temperature of 100F and a pressure altitude of 6,000 feet.
- Therefore, if your standard temperature sea level takeoff distance normally requires 1,000 feet of runway to climb to 50 feet, it would become 3,300 feet under the conditions shown in the chart.
- In addition, the rate of climb would be decreased by 76 percent. Also, if your normal sea level rate of climb is 500 FPM, it would become 120 FPM.

TO FIND THE EFFECT OF ALTITUDE AND TEMPERATURE

Cruise performance

- Power setting & fuel consumption
- Altitude, wind, & ground speed
- En-route fuel usage and availability
 - Confirm "time in your tanks" hourly
 - How much are we using?
 - Fuel management (both? L&R?)
- Don't wait to land & refuel
 - Too easy to press on
- Don't land with less than one hour of fuel

Cruise performance

CESSNA MODEL 172S SECTION 5 PERFORMANCE

CRUISE PERFORMANCE

CONDITIONS:

2550 Pounds Recommended Lean Mixture At All Altitudes (Refer to Section 4, Cruise)

Relative to std temp, not actual temp
at altitude
Standard temp at x feet

15 – (x/1000 * 2)

At 4,000' std temp = 7C

If temps aloft = 27C, use last set of columns

Lots of interpolation? Be sensible!

(Gruise)							1				
	PRESS		20° STAN	C BELC	DW TEMP	STANDARD TEMPERATURE			20°C ABOVE STANDARD TEMP			
	ALT FT	RPM	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH	
	2000	2550	83	117	11.1	77	118	10.5	72	117	9.9	
		2500	78	115	10.6	73	115	9.9	68	115	9.4	
		2400	69	111	9.6	64	110	9.0	60	109	8.5	
		2300	61	105	8.6	57	104	8.1	53	102	7.7	
		2200	53	99	7.7	50	97	7.3	47	95	6.9	
		2100	47	92	6.9	44	90	6.6	42	89	6.3	
	4000	2600	83	120	11.1	77	120	10.4	72	119	9.8	
		2550	79	118	10.6	73	117	9.9	68	117	9.4	
		2500	74	115	10.1	69	115	9.5	64	114	8.9	
		2400	65	110	9.1	61	109	8.5	57	107	8.1	
		2300	58	104	8.2	54	102	7.7	51	101	7.3	
		2200	51	98	7.4	48	96	7.0	45	94	6.7	
		2100	45	91	6.6	42	89	6.4	40	87	6.1	
	6000	2650	83	122	11.1	77	122	10.4	72	121	9.8	
		2600	78	120	10.6	73	119	9.9	68	118	9.4	
		2500	70	115	9.6	65	114	9.0	60	112	8.5	
		2400	62	109	8.6	57	108	8.2	54	106	7.7	
		2300	54	103	7.8	51	101	7.4	48	99	7.0	
		2200	48	96	7.1	45	94	6.7	43	92	6.4	

Cruise performance

- Have TAS from cruise table
- At what IAS do we fly to get this TAS?
- How do you fly the actual TAS?
 - Use your EFIS!
 - E6B from DA and TAS, can get CAS
 - Rule of thumb:
 - For each 1,000' of density altitude, add 2% CAS to get TAS
 - TAS ~ CAS*(1+0.02*DA/1000)
 - CAS ~ TAS/(1+0.02*DA/1000)
- Some ASIs have a TAS scale

So...we need to know...DA (PA and Temp)

- DA = PA corrected for non-standard temperature
- DA is equivalent altitude in the ISA that results in same air density
- Air density is the "amount" of air per unit volume
- Dense = more air per unit volume
- Less dense = less air per unit volume
- Air density deceases with altitude:
 - Lower density occurs at higher altitudes
- So, high DA means lower air density

We need to know...DA (or PA and Temp)

- So, high DA means lower air density, which means:
 - Lower engine power (normally aspirated)
 - Longer ground tale off roll
 - Need to go faster for the same amount of air to go into the pitot tube to get to V_R
 - Ground speed on take off will be higher than in low DA conditions
 - Lower climb rate
 - Less engine power
 - Less lift at given airspeed (lift equation)
 - Different cruise
 - Low density reduces drag (drag equation)
 - Higher true airspeed, even at lower power
 - Via the wind triangle, higher TAS means faster ground speed, means less fuel
 - Longer ground landing roll
 - Higher TAS = higher GS = "looks faster" (it is!)
 - Fly using the IAS!

Determining DA

- DA = PA corrected for non-standard temperature
- So, first find PA!

Determining PA - 1

- Find PA (altitude relative to pressure datum of 29.92")
 - Set "the knob" to 29.92"
 - PA = attitude reading
 - PA = 920' here

Determining PA - 2

- DA = PA corrected for non-standard temperature
- Use the approximate pressure lapse rate of 1,000' per inch of Hg
- Say recorded altimeter setting is 30.1"
 - This is the pressure at sea level at that place and time
- You are flying at 5,000' MSL
- PA = 5,000 + (29.92 30.1) * 1000 = 4,820'

Determining PA - 3	Altimeter Setting (" Hg)	Pressure Altitude Conversion Factor
 DA = PA corrected for non-standard temperature 	28.0 28.1 28.2 28.3 28.4	1,824 1,727 1,630 1,533 1,436
Use a PA table	28.5 28.6	1,340 1,244
 Uses a more accurate lapse rate 	28.7 28.8 28.9	1,148 1,053 957 863
 Add the correction factor to the known MSL 	29.1 29.2	768 673
 At 5,000', when reported pressure is 30.1" 	29.3 29.4 29.5	485 392
• PA = 5,000-165 = 4,835'	29.8 29.7 29.8	298 205 112
 At KFDK, when reported pressure is 28.9" 	29.9 29.92 30.0	20 0 -73
• $PA = 320 + 975 = 1,295'$	30.1 30.2	165 257 348
 Note that a low ambient pressure increases PA (and so DA) 	30.4 30.5	-440 -531
	30.6 30.7	622 712

Either way...

- Some performance graphs require DA
- Some tables need PA and Temp
- Either way, we need to know DA for other things like TAS to CAS conversions
- So...we need to know how to determine DA!

SECTION 5

CESSNA

Determining DA-1

- E6B (or another calculator)
- Get PA by setting 29.92" in the altimeter window (set it back after!)
- Get outside temperature = Temp
- Set PA and Temp on the small right-hand scale. Watch the pos(+) and neg(-) directions!
- Read DA

Determining DA-2a

- Use the PA-Temp chart
- Get PA
 - Set "the knob" to 29.92" and read-off PA
 - Don't forget to set it back to QNH
- Knowing PA and Temp, find DA

Determining DA-2b

- Use the PA-Temp chart
- Get PA
 - Use QNH (altimeter setting)
 - Determine the PA fiddle factor from the table
 - Add the fiddle factor to elevation or altitude
- Knowing PA and Temp, find DA

Federal Aviation

Example

- At FDK, elevation = 320'
- If QNH = 29.00"; fiddle factor is +893
- PA = 320 + 893 = 1,313'
- If T = 32°C
- DA = Approx. 3,600'

Determining DA-3

- Listen to the AWOS...!
- Use an online calculator
- Use your fav EFB
- Airport elevation = 13'
- Temp = 21C: DP = 19C
- Alt = 29.91"
- DA = 1,028'

DA Poster from AOPA

https://www.aopa.org/training-and-safety/air-safetyinstitute/safety-publications/density-altitude

Density Altitude: Beware Of Thin Air

High altitude, high temperature, and high humidity create less dense or thinner air that contribute to high density altitude and impact aircraft and engine performance. Modify and use the AOPA Air Safety Institute's Density Altitude Poster to quickly know the density altitude values at your airport on a standard day.

READ THE ARTICLE AND GET THE POSTER

Learning Points

- General aviation accidents continue to be associated with inaccurate or unreasonable expectations with regard to aircraft performance
- Accidents occurring in the takeoff and initial climb phases of flight are likely to be fatal
- Accurate prediction of aircraft performance is essential to dealing with power loss—especially during the takeoff and climb phases of flight
- Running the numbers isn't that difficult and a "take-off and landing card", whether manual or electronic, should be part of every pre-flight action plan

Proficiency and Peace of Mind

- Fly regularly with your CFI
- "Revert to training"...only works if...?
 - a) You've seen it before
 - b) You've done it recently
- Practice, practice...
 - Get in your head
 - …and keep it there…
- Document in WINGS

Federal Aviation Administration

Next Month's TOM...

The National FAA Safety Team Presents

Federal Aviation Administration

Introduction to Safety Risk Management (SRM)

Presented to:	WAFC and Friends
By:	Stephen Bateman, CFI
Date:	Monday January 9th, 2023

Produced by: The National FAA Safety Team (FAASTeam)

Federal Aviation Administration

Thank You For Attending!

You are vital members of our GA safety community!

